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Abstract—This paper presents an efficient calibration method
for piezoresistive pressure sensors. We applied this method to
calibrate 35 pressure sensors integrated into an e-textile insole,
utilizing machine-measured pressure-resistance pairs within the
pressure range of 1-10 N as reference values for error assessment.
The efficient calibration process required only 15 minutes, result-
ing in an average relative error of 14.4%. In contrast, traditional
calibration methods necessitated more than two hours, achieving
a relative error of 12.1%. This method effectively addresses the
calibration challenges of piezoresistive pressure sensors within
practical device and time cost constraints, holding significant
implications for the real-world application of pressure sensor
products that require frequent calibration.

Index Terms—e-textiles, piezoresistive sensor, pressure sensor,
sensor calibration.

I. INTRODUCTION

In recent years, with advancements in sensor technology,

pressure sensors have been widely applied in health [1],

[2] and wearable device [3] domains. E-textiles, with their

simplicity and comfort, offer vast potential for the application

of pressure sensors in these areas [4]–[6]. Among various types

of pressure sensors, piezoresistive pressure sensors are widely

utilized in e-textile devices and applications due to their low

cost, flexibility, and ease of manufacturing and processing [7],

[8]. However, the pressure-resistance characteristic curves of

piezoresistive pressure sensors exhibit individual differences,

and variations in the sewing positions within e-textiles can

lead to different detected force component at the sensor point.

Even for the same sensor, prolonged use can result in changes

to the characteristic curve due to material aging, leading to

reduced accuracy. Therefore, regular calibration is necessary

when using piezoresistive pressure sensors [9].

In laboratory settings, the readings from pressure and resis-

tance measuring instruments are commonly used as reference

values to calibrate pressure sensors. Although this method

can yield relatively accurate calibration reference values, it

is often very time-consuming—especially for e-textile devices

that are equipped with a large number of pressure sensors. The

calibration issue poses a significant obstacle to the practical

application of e-textile devices configured with such sensors.

The equipment and time demands of traditional calibration

methods make practical implementation challenging for com-

mercialization.

In recent years, a series of novel calibration methods for

piezoresistive sensors have been proposed. These methods,

based on machine learning models [10], [11] and algorithms

[12], [13] or on optimizations to the sensor structure itself [14],

have achieved enhancements in calibration performance. Un-

fortunately, these efforts primarily focus on optimizing sensor

accuracy in laboratory environments, rather than addressing

practical needs: achieving a relatively acceptable calibration

accuracy within feasible equipment and time costs, thereby

facilitating the practical commercial application of e-textile

devices equipped with these sensors.

In this paper, we tested the resistance-pressure character-

istic curves of piezoresistive pressure sensors within their

specified range. We found that these sensors exhibit a well-

defined functional relationship R = kFα within an appropriate

pressure range. Consequently, the parameters of the equation

logR = α logF+log k can be determined using the two-point

regression method, allowing the characteristic function of the

sensor to be derived using only two pairs of resistance-pressure

values. This article employs measurements from pressure

gauges and resistance testing instruments as benchmarks to

compare the relative errors of calibrating 35 pressure sensors

using the two-point method versus the all-measurement-point

method. The findings confirm that the two-point method with

properly selected two resistance-pressure pairs can achieve

calibration accuracy comparable to that of the latter.

Inspired by the success of the two-point calibration method,

we propose an efficient calibration approach: simplifying the

simulation of two specific pressure points using two different

weights, while resistance can be measured by deriving the

voltage values through a voltage divider circuit in the e-

textiles microcontroller. Experimental validation demonstrates

that this method achieves a relative error of 14.4%, only

marginally higher than the 12.1% of the traditional precise

method, while consuming only one-tenth of the time required

by the latter. This method enables the efficient calibration

of e-textile devices equipped with pressure sensors outside

of laboratory settings, representing a significant advancement

toward its practical application and commercialization.
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Fig. 1. Workflow Diagram of the Calibration System

II. METHODS

A. Traditional Precise Calibration Method

Traditional calibration methods use resistance-pressure pairs

obtained simultaneously from force gauges and resistance

meters as reference values. Then, based on the functional

relationship exhibited by the resistance-pressure response of

the pressure sensors, a calibration function can be derived

through regression modeling.

Fig.1 illustrates the workflow of the calibration system.

Based on the reference resistance-pressure relationship, an

appropriate functional model is selected for regression analy-

sis. The inverse of the regression function is then derived to

obtain the calibration function. The calibration function reads

resistance values from the e-textile device and outputs the

corresponding pressure values.

The accuracy of this calibration method relies on the mea-

surement precision of the pressure and resistance instruments

themselves. It also depends on the degree to which the charac-

teristic curve of the pressure sensor conforms to the functional

model. The precision of the instruments is generally much

higher than that of the pressure sensors, so the calibration

accuracy primarily depends on the correct selection of the

functional model. Typically, pressure sensors only conform

to the functional model within a specific range (known as

the linear range), which is determined by factors such as

material and manufacturing processes. However, achieving

high sensitivity often requires operating outside of this linear

range, which represents one of the challenges of pressure

sensors. In other words, as long as the specified linear range

of the pressure sensor is observed, the functional model can

be considered relatively accurate.

We tested three sensors each from the glove and insole,

with their R-F curves displayed in Fig.2 and Fig.3. It can be

observed that within their operational range (1-10 N), they

generally conform well to a power function relationship R =
kFα, appearing approximately linear in the logarithmic plot.
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Fig. 2. R-F Curve of 3 Sensors in Data Glove
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Fig. 3. R-F Curve of 3 Sensors in Insole



For data gloves made of soft, thin fabrics, the pressure sen-

sors experienced minimal interference, resulting in a character-

istic curve that exhibited a strong power function relationship

over the entire pressure range. In contrast, sensors embedded in

the insoles often exhibited deviations at lower pressure levels.

By taking the logarithm and applying linear regression, we

can achieve good regression results by selecting two suitable

resistance-pressure pairs and avoiding significantly deviating

low-pressure regions.

2.59 

12.10 

20.91

3.83 

12.92 

25.88 

R
el

at
iv

e 
E

rr
o
r 

(%
)

0 

5 

10 

15 

20 

25 

30 

Two-Point

All Points

Fig. 4. Error Analysis of Two-Point and All Points Methods

We used an insole integrated with 35 pressure sensors and

employed measurements from a pressure gauge and resistance

meter as reference standards. From these measurements, we

selected two resistance-pressure pairs at pressure values of

5 N and 10 N for linear regression. We then compared

this approach with the method using regression across all

measurement points. The results in Fig.4 show that using two

appropriately selected resistance-pressure pairs for regression

can achieve performance comparable to that of using all points

for regression, while avoiding deviations in low-pressure re-

gions that could introduce additional errors.
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Fig. 5. Variation of Mean Relative Error with Pressure

Further analysis of the variation in relative error with

pressure in Fig.5 reveals that errors are concentrated in the

low-pressure region—where the calibration function does not

hold—while performance in the linear region is excellent.

B. Feasibility of the Two-Point Calibration Method

In this study, the two-point calibration method was adopted

primarily for its practicality and ease of implementation in

real-world applications, rather than to achieve the highest pos-

sible calibration accuracy. This approach significantly reduces

the time and effort required for calibration, which is crucial in

practical settings. As long as the additional error introduced

by the two-point calibration remains within acceptable limits

relative to the time saved, and does not substantially impair the

usability or reliability of the data, this method is considered

acceptable.

We acknowledge that the drift in the sensor’s response

curve involves various nonlinear effects, particularly after

applying a logarithmic transformation to the resistance-force

(R-F) relationship. This complexity explains why a simple

linear model with only two parameters may not fully capture

the sensor’s behavior. However, experimental results have

demonstrated that, within the pressure range commonly used in

E-textile devices, the responses of many different sensors can

be effectively approximated by linear regression. Moreover,

the linear operating range of these sensors has not exhibited

significant degradation with continued use. Ongoing long-

term tracking experiments are being conducted to further

substantiate these findings.
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Fig. 6. R2 Values of Sensors
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Fig. 7. Std Error Values of Sensors

We conducted experiments over two separate days to eval-

uate the linear regression coefficients of determination (R²)

and standard errors of 35 sensors within the 1–10 N range

(excluding the data for sensor P33 on September 12 due to

anomalies) in Fig. 6 and Fig. 7.

C. Efficient Weight-Based Calibration Method

Observing Fig.3 and Fig.8, we observe that even for the

same sensor, the characteristic curve can shift over time due



to aging. Consequently, piezoresistive sensors require frequent

calibration. In our laboratory, calibrating each pressure sensor

using the method described in the previous section typically

takes 3-5 minutes. This means that an insole equipped with

35 sensors would require approximately two hours; a pair of

insoles would take four to five hours. If insoles of various sizes

are needed for the experiment, this time requirement would

further double—leading to an unacceptable time cost, which

is impractical even within a laboratory setting.
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Fig. 8. R-F Curve of Sensor 1 in Different Calibration Date

The success of the two-point regression method has inspired

us. We can use weights to replace specific pressure points, and

the resistance is measured via the onboard voltage divider cir-

cuit of the microcontroller. This method significantly simplifies

the calibration process.

We used common 500g and 1kg weights along with a plastic

base (bottom diameter 16mm, the same size as the force gauge

probe) to simulate the 5 N and 10 N pressures generated by

the force gauge. During calibration, the weights only need

to be placed on each sensor for a few seconds, allowing the

calibration of all 35 sensors to be completed in a matter of

minutes.

Fig. 9. 500g weight and plastic base

III. SYSTEM DESIGN

A. E-Textile Insole Design

We use Adafruit VELOSTAT piezoresistive material as the

raw material for our pressure sensors. This material is a film

made from a polymer (polyolefin) containing carbon black. It

exhibits a decrease in resistance when subjected to pressure

and conforms well to a functional relationship within a certain

pressure range. Its characteristics include being cost-effective

and providing sufficient accuracy for e-textile devices, though

its accuracy depends on proper calibration. Its properties are

listed in Table I.

TABLE I
SPECIFICATIONS OF ADAFRUIT VELOSTAT PRESSURE SENSOR

Specifications Value

Price $4.95
Size 280 mm × 280 mm × 0.2 mm

Temperature Limits −45◦C to 65◦C
Volume Resistivity < 500 Ω · cm
Surface Resistivity < 31000 Ω/cm2

Linear Pressure Range 1− 10 N
Resistance Range (1-10 N) 1− 10 kΩ

We utilize a Brother PR1X sewing machine to stitch to-

gether the circuit and VELOSTAT material onto the insole,

which is designed using sewing software with predefined

outlines, circuit paths, and sensor locations. The GPIO pins

of the microcontroller (ESP32) are connected to all row and

column wires on the e-textile via designated pins reserved

on the insole. Each pair of row and column wires uniquely

identifies a pressure sensor, and the resistance between them

represents the resistance of that sensor. The schematic of the

fabrication process is shown in Fig.10.

Sewing 

Machine

Fig. 10. Fabrication Process of an Insole (Equipped an ESP32 Microcon-
troller)

B. Hardware Design
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Fig. 11. Voltage Divider Circuit

We designed a voltage divider circuit on the PCB where

the ESP32 microcontroller is located, as shown in Fig.11.



In this circuit, R1 is the voltage divider resistor, R2 is the

resistance of the sensor under test, and a reference voltage

Vref is provided. According to the Resistance Range in Table.I,

the range for R2 is 1-10 kΩ. Therefore, selecting a 5 kΩ
voltage divider resistor R1 is appropriate. The microcontroller

reads the output voltage Vout from the circuit. By using the

microcontroller, it is possible to measure the resistance of all

sensors simultaneously at a high frequency (up to 100 Hz),

obtaining pressure data with high temporal resolution.

C. Algorithm Design

1) Weight Activation Value Detection: We employ a sim-

ple peak-detection and window-smoothing method to identify

readings when weights are placed on different sensors. This

procedure preprocesses pressure data using a simple moving

average filter to smooth the raw signal and eliminate noise.

It then detects sensor activation upon weight placement by

setting a threshold and identifying pressure activation regions

based on duration. The threshold constraint is designed to

prevent interference between closely spaced sensors, while the

duration constraint helps avoid accidental activation of non-

target sensors during the experiment.

Due to the potential for random errors from manual place-

ment of weights, repeating the experiments can enhance ac-

curacy. We conducted one to five repetitions of the weight

calibration method on a sensor located in a corner of the insole

(where it is difficult to stabilize the weight) and analyzed

the relationship between the relative error and the number of

repetitions of the experiment. We found that three repetitions

effectively improved precision, achieving a balance between

time required and accuracy, as shown in Table II.

TABLE II
TESTING FOR RELATIVE ERROR WITH REPEAT TIMES

Method Weight (Repeat Times) Two-Point

1 2 3 4 5

Relative Error (%) 14.63 10.15 8.49 8.05 7.41 4.82

The workflow of the entire algorithm is depicted in Fig.12.

2) Regression Algorithm: The principle of the regression

algorithm is quite straightforward, based on the sensor fol-

lowing the function R = kFα. Taking logarithms, we obtain

a linear function logR = α logF + log k. For the two-point

method, these two points are used directly to determine the

line, and the parameters k and α are then solved for. For

the all points method, due to significant offsets in the low-

pressure area, it is necessary to filter out these outlier values.

Fortunately, our LCR meter provides output fluctuations for

each measurement point, which we directly use as a basis

to filter permissible resistance-pressure points for regression

analysis. Experiments have shown that point i satisfying the

condition that:

Fluci < min(5× Flucmin, 100)

generally falls within the linear range.

1kg weight, 3times

500g weight, 3times

500g1kgSensor P1

0.846 V0.874 VMeasure

Voltage

2923 Ω2774 ΩResistance

Peak

Detection

Average

500g1kgSensor P2

0.696 V0.752 VMeasure 

Voltage

4059 Ω3542 ΩResistance

...

500g1kgSensor P35

0.776 V0.853 VMeasure 

Voltage

3362 Ω2884 ΩResistance

Fig. 12. Weight Activation Value Detection

3) Error Assessment Algorithm: The workflow of the error

assessment algorithm is depicted in Fig.13. After deriving

the regression function through the regression algorithm, the

pressure values from the reference measurements are input

as the independent variable into the regression function. The

difference between the output of the regression function and

the actual resistance values in the reference data is used to

calculate the relative error.
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IV. EXPERIMENT

A. Experiment Settings

In our laboratory, we use an IMADA ZTA-50N pressure

gauge to measure pressure and an NF ZM2372 LCR meter

to measure resistance, using the resistance-pressure values

measured by these instruments as reference values. The test

insole is a laboratory-manufactured e-textile insole, incorporat-

ing 35 pressure sensors fabricated using Adafruit VELOSTAT

piezoresistive material.
This method requires approximately three minutes to cali-

brate each sensor, and the prolonged repetitive tasks can lead to

decreased attention and concentration, thereby increasing the

likelihood of errors and further extending the time required.

Calibrating all 35 sensors takes about 150 minutes.

Insole with 

pressure sensor 

to be calibrated

IMADA 

ZTA-50N

Force Gauge

NF ZM2372 

LCR Meter

Fig. 14. Measurement Instruments

Subsequently, we use two pairs of resistance-pressure val-

ues, measured with two different weights and a microcon-

troller, as regression parameters for the efficient calibration

method. Repeating this procedure for all sensors three times

completes the entire calibration process.

B. Experiment Result
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Fig. 15. Relative Error of Different Methods

Using this method, calibrating each sensor takes only about

5 seconds. Even with three repetitions of the experiment,

calibrating all 35 sensors takes only about 15 minutes, which is

one-tenth the time required by the precise method. The results

shown in Fig.15 illustrate that using the efficient method with

weights increases the average relative error by only 2.3%,

while saving 90% of the time.

V. CONCLUSION

In this study, we developed and validated an efficient

calibration method for piezoresistive pressure sensors inte-

grated into e-textiles. The new method dramatically reduces

calibration time to just 15 minutes for 35 sensors, compared

to over two hours required by traditional precise methods,

while maintaining a reliable average relative error of 14.4%,

only marginally higher than the 12.1% of the traditional

precise method. Such efficiency, coupled with satisfactory

accuracy, represents a significant improvement in the field of

pressure sensor calibration, particularly for practical applica-

tions requiring frequent calibrations. The practical implications

of this research are profound, enabling the deployment of

pressure sensor equipped e-textile technologies in real-world

applications beyond the confines of laboratory environments.
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